Using spectral distances for speedup in hyperspectral image processing
نویسنده
چکیده
This paper investigates the efficiency of spectral screening as a tool for speedup in hyperspectral image processing. Spectral screening is a technique for reducing the hyperspectral data to a representative subset of spectra. The subset is formed such that any two spectra in it are dissimilar and, for any spectrum in the original image cube, there is a similar spectrum in the subset. The similarity can be described through various spectral distances and can be controlled by a threshold value. The spectral screening is improved by associating with each spectrum in the subset a weighing factor proportional to the number of spectra in the original image that are similar to it. Following its generation, the subset is used in further computations instead of the full data. The resulting processing mappings are then applied to the data. The investigation focused on the comparison between distance measures such as spectral angle and spectral correlation angle, in terms of efficiency of the results and speedup obtained when tested with Principal Component Analysis (PCA) and Independent Component Analysis (ICA), two processing techniques used when dealing with hyperspectral data. We also investigated the advantage of weighting versus non-weighting the spectral subset, and the optimum performance of the screening algorithm. The experiments were performed on HYDICE, Hyperion and AVIRIS data and validate the usefulness of spectral screening for data reduction. Preprocessing through spectral screening provides significant speedup to PCA and ICA without reduction in data accuracy.
منابع مشابه
Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کامل